TMS165/MSA350 Stochastic Calculus Written exam Tuesday 4 January 2022 2–6 PM

TEACHER AND JOUR ON TELEPHONE: Patrik Albin 031 7723512.

AIDS: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).

GRADES: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Througout this exam $B = \{B(t)\}_{t>0}$ denotes a **P** Brownian motion.

Task 1. Show that if a function $g:[a,b] \to \mathbb{R}$ has finite variation $V_g([a,b]) < \infty$, then g is bounded $\sup_{x \in [a,b]} |g(x)| < \infty$. (5 points)

Task 2. Is the process $\{\int_0^t (t-r)^{-\alpha} dB(r)\}_{t\geq 0}$ a martingale wrt. the filtration $\{\mathcal{F}_t^B\}_{t\geq 0}$? (5 points)

Task 3. A process X(t) has stochastic differential with diffusion coefficient $\sigma(x) = x(1-x)$. Assuming that $X(t) \in (0, 1)$, show that the process $Y(t) = \ln(X(t)/(1-X(t)))$ has a constant diffusion coefficient. (5 points)

Task 4. Solve the SDE dX(t) = B(t) dt + X(t) dB(t) for $t \ge 0$, X(0) = 1.

(5 points)

Task 5. Find a change of probability measure $d\mathbf{Q}/d\mathbf{P}$ such that $X(t) = e^{B(t)}, t \in [0, T]$, is a **Q** martingale. (5 points)

Task 6. Explain how it can be that the rate of convergence for the Euler numerical scheme is quicker for weak solutions than for strong solutions. (5 points)

TMS165/MSA350 Stochastic Calculus Solutions to Written Exam 3 January 2022

Task 1. For $x \in [a; b]$ we have $|g(x) - g(a)| \le V_g([a, x]) \le V_g([a, b])$ so that $\sup_{x \in [a, b]} |g(x)| \le \sup_{x \in [a, b]} |g(x) - g(a)| + |g(a)| \le V_g([a, b]) + |g(a)| < \infty$.

Task 2. No, as $\mathbf{E}\{\int_0^t (t-r)^{-\alpha} dB(r) | \mathcal{F}_s^B\} = \int_0^s (t-r)^{-\alpha} dB(r) + \mathbf{E}\{\int_s^t (t-r)^{-\alpha} dB(r) | \mathcal{F}_s^B\}$ = $\int_0^s (t-r)^{-\alpha} dB(r) \neq \int_0^s (s-r)^{-\alpha} dB(r).$

Task 3. Let $f(x) = \ln(x/(1-x))$ so that f'(x) = 1/(x(1-x)), giving dY(t) = df(X(t))= $f'(X(t)) dX(t) + \mu_1(X(t)) dt = \ldots = dB(t) + \mu_2(X(t)) dt$.

Task 4. By equation 5.31 in Klebaner's book the solution is $X(t) = e^{B(t)-t/2} (1 + \int_0^t e^{-B(s)+s/2} B(s) ds).$

Task 5. As $d(e^{B(t)}) = e^{B(t)} dB(t) + \frac{1}{2} e^{B(t)} dt$ we get $\mu_1(t) = e^{B(t)}/2$, $\sigma_1(t) = e^{B(t)}$ and $\mu_2(t) = 0$ in equation 10.32 in Klebaner's book giving $d\mathbf{Q}/d\mathbf{P} = e^{-B(T)/2 - T/8}$.

Task 6. See Stig Larsson's lecture notes.